
AI XPrize Machine Learning Plan

Remy Bubulka, Coleman Gibson, Kieran Groble, Lewis Kelley

December 11, 2017

Introduction

In general, there are two proposed methods for training the robot AI, one
with a human in the loop and one with only AI’s bouncing data off of each
other. The game has two roles, the "human" and the "robot."

Due to the potential confusion of having the "human" be controlled by
either an actual person or an AI, for this document we shall refer to the role
giving instructions as the Commander and the role receiving commands as
the Worker.

From a high level, whatever system is put in for the Worker, it should
operate as a function that inputs:

• a list of blocks with their locations and visual information

• a command string from the Commander

• a 2D point the Commander pointed to

and outputs:

• a 2D point representing the block to pick up

• a 2D point representing where to drop the block

Notable Assumptions

Essentially, this AI that is being produced should act as a function that looks
like this:

make_move(List<Blocks> world,
String command,
Point pointed)

-> (Point start, Point end, bool should_flip)

1



Note that there is precisely one point action. We assume that the user
will only point to at most one location for each command. This is due to the
added complexity of handling an arbitrary number of pointed-to locations
and correlating the times of their occurrence with the times of each individual
word in the spoken command ("Move this <point> block there <point>").

Additionally, this assumes that each command will ask for only one block
to be moved. Phrases such as, "Move all the blocks over here," will not be
possible.

Full Q-Learning

System Design

The map will be broken down into a discrete number of cells. Each square
block will take up an odd number of cells, as will the representation of the
arm. The pointer will point to exactly one cell. To pick up a block, the
arm must contain the centermost cell of a block. If there are multiple blocks
underneath the arm, select the one closest to the center.

Worker Design

The Worker will be implemented using a Q-learning algorithm.

State

The state of the system will be made of:

• the current locations and visual details of all the blocks

• the current location of the Worker’s arm

• the syntax tree of the last command from the Commander

• the location pointed to by the Commander

• whether a block is being currently held by the arm and the visual
details of that block

Actions

The possible actions at any state (assuming that the action will not take the
arm out of bounds) will be:

2



• move north by one cell

• move east by one cell

• move south by one cell

• move west by one cell

• move north by ten cells

• move east by ten cells

• move south by ten cells

• move west by ten cells

• toggle arm (to grab / drop the block)

• flip arm (to flip blocks)

• stop

There are 10 possible actions from each state, leading to a rather large
explosion of possible states. The 10 cell movements were chosen to give the
algorithm a better chance of finding the exit each

Training Phases

In order to get a basically trained AI to perform the job of the Worker,
an automated Commander will be created using data gathered from the
previous "Human as Worker" stage.

This has the great advantage of being extremely fast; without a human
in the loop, thousands of trials may be executed in the same time that a
human could issue a single instruction. Unfortunately, the only system that
can effectively mimic instructions from any potential user is humans. If we
only train with an AI Commander, the Worker may learn only the subset
of interactions that the AI Commander knows about, and will be unable to
handle more diverse and unexpected input.

To counter this, once the Worker is trained to a "passable" point, fully
automated learning will be switched off and the game will be made available
for humans to play as the Commander. Since the Worker has been previ-
ously trained, the humans will produce much more relevant data from their
interactions with the Worker, as opposed to if they were trying to talk to a
non-responsive, untrained Worker.

3



Completely Automated

• Outline

Stage Number of Number of Sequence of
Instructions Blocks Instructions

(1) Proof of Concept 1 1 Fixed
(2) World Size 1 5 Fixed
(3) Instruction Count 5 5 Fixed
(4) Randomize Order 5 5 Randomized
(5) Randomize Phrases 5 5 Randomized
(6) Randomize Accuracy 5 5 Randomized
(7) Randomize Configuration 5 5 Randomized

Stage Phrases "Human" World
Used Accuracy Configuration

(1) Fixed Perfect Fixed
(2) Fixed Perfect Fixed
(3) Fixed Perfect Fixed
(4) Fixed Perfect Fixed
(5) Semi-Randomized Perfect Fixed
(6) Semi-Randomized Randomized Fixed
(7) Semi-Randomized Randomized Randomized

• Implementation of the AI Commander During the previous "Human as
Worker" phase, the system gathered lots of data about how humans act
as the Commander. Using these interactions, we will assemble an AI
Commander by patching together different phrases (at random, when
necessary).

Human in the Loop

Once the Worker AI reaches a certain acceptable baseline, the AI Comman-
der will be swapped out with a wide array of human Commanders to provide
a much more diverse set of interactions than with a single partner.

This then essentially gets turned into single-player Blocksworld, allowing
for a much more playable and accessible game.

4



Reduced Q-Learning

System Design

This proposal follows the same layout as Full Q-Learning, but it attempts
to handle the most significant hurdle to that method: scale. With all of the
possible statements that could be given by the commander and how many
different arrangements the board can have, Q-Learning would have too many
states to remember and would rarely ever find itself in the same state.

Our improvements to this is twofold: reduce the language into structure
and reduce the precision of location of blocks.

Structural Language

In order to reduce the number of possible permuations that arise as the result
of natural language, and given the fairly restrictive nature of the domain of
many commands, the structure of the command and its direct object are
likely the most relevant pieces of information about that command. Take
these sentences with their direct objects underlined, for example.

Move that red block over here. Place that red block around there. Set
the red block near there.

To us, all of these sentences are saying the same thing (assuming the
Commander is pointing to the same spot). If we only think about the struc-
ture and the direct object, we’re able to group these sentences together into
one shared state as well as distinguish between sentences like the following.

Don’t move the red block over here. Move the blue block over here. Move
the red block into that corner.

There are some obvious drawbacks to such a simplistic solution. For
starters, this won’t be able to handle more complex sentences such as:

Move the red block next to that yellow block. Move it a bit to the right.
These are significant, and a more useful way of reducing a sentence may

be useful.

Location of Blocks

In order to collapse the different possibilities of the locations of the blocks,
we reduce the state of the world into a k-d tree. The state will only have a
precise coordinate for the block it is closest to, and after that it will have less
and less detailed knowledge of the precise locations of more distant blocks.

The reasoning behind this is that moving a single block a tiny bit, espe-
cially when that block is irrelevant to the given command, would completely

5



ignore any gained knowledge of an otherwise identical problem. If the loca-
tions of distant blocks are fuzzed, then small changes in their location will
not affect the remembered state nearly as much.

Neural Network

System Design

Another option for mapping inputs to instructions is to use a neural network.
This method would allow for increased flexibility in the text input, as we
would not need to constrain the format in any way. It would, however, require
us to have a sizable data set before we are able to get meaningful results.
This will be difficult to do without either a significant time commitment or
a large number of people to help.

Worker Design

Inputs

There are several possible ways we could provide inputs to our neural net-
work, with our most significant choices being in how we provide the blocks
and point locations from the Commander. One option is to fix the number
of possible blocks or to give a maximum possible number. This would be
most likely to give good results, but would provide constraints on the way
the Worker views the outside world. The other option is to use an LSTM
or similar recurrent layer to allow for variable length inputs. This would
allow for an increase in flexibility, but may decrease the performance of our
network. Neither the set of input blocks nor the points has any temporal
locality, which is the usual use case of recurrent networks. A "window" of
blocks is not really something that makes sense.

Outputs

We also have a number of options for our neural network output. One option
is to set a discrete set of possible locations. The output to the neural network
would then be the index of the block to move, followed by the location to
place the block. Another option is to output two points. The first point
would again refer to a block, but instead of being an index we would consider
the block closest to the given point. The second point would then be the
exact location to place it. We could also consider the output to be a set of
instructions for the final robot. As an example, it could be the starting and

6



final configurations for the arm. However, this method would be much more
difficult to gather data for, and to test outside of the lab.

Training Phases

Using neural networks would provide a similar set of trade offs as the other
methods. We will either need to spend a significant amount of time gathering
data or use generated data, which may not be varied enough to allow us to
eventually consider the entire English language. Similar to above, we would
likely proceed by training on generated data until our Worker is passable,
then allow access to human commanders who would be able to provide higher
quality data.

Conclusion

In brief, this is a very hard problem to solve, mostly due to the continuous
and consequentially enormous input space. Natural language is in itself a
huge task, but when combined with an additionally enormous space of the
placement of a various number of blocks placed at non-discrete positions on
a board, the problem gets substantially more difficult.

Reinforcement learning works best when there is a manageable number of
states to track and to score, but this is entirely infeasible without significantly
reducing the search space, and even then those reductions may be corruptive
or insufficient to handle to problem.

We believe our best option is to utilize a neural network, train it to a
"passable" level using the automated Commander, and finally turn it loose
onto human players to gather a more diverse set of interactions.

7


